Ex x xf xdx. Ex+ a = x+ a f x dx= xf x dx+ a f xdx= xˆ. E H x H x H x f x dx ˆ ( ) ( ) ( ) μ is actually the first moment of the random ( )

Size: px
Start display at page:

Download "Ex x xf xdx. Ex+ a = x+ a f x dx= xf x dx+ a f xdx= xˆ. E H x H x H x f x dx ˆ ( ) ( ) ( ) μ is actually the first moment of the random ( )"

Transcription

1 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede The Epectation Value o a Random Variable: The epectation value E[ ] o a random variable is the mean value o, ie ˆ (aa μ ) For discrete i, [ ] E is the sum o all i, weighted by their associated probabilities Discrete i : E [ ] ˆ μ P N i= i i P : For continuous, E [ ] is the integral over all, weighted by the probability density unction o, ( ): Continuous : [ ] ˆ μ E d Note: ˆ is not a random variable it is a single, well-deined number that characterizes the true mean o the particular/speciic distribution o a random variable It is clear that or any constant, a: N N N E+ a = + a P = P + a P = ˆ + a Discrete: [ ] i i i i i i= i= i= = E+ a = + a d= d+ a d= ˆ + a Continuous: [ ] In act, any unction o, H( ) has an epectation value: Discrete: EH [ ] Hˆ H P N i= Continuous: [ ] ˆ E H H H d The true mean/epectation value E [ ] ˆ μ is actually the irst moment o the random variable s probability distribution, relative to/taen about the origin = 0 The L th moment o the random variable taen about an arbitrary point = c is deined as: i i = i μ L E[( c) L ] nb Moments taen about = 0 are nown as algebraic moments Moments taen about the true mean = μ are nown as central moments In particular, the nd moment o taen about/with respect to the true mean ˆ is: μ [ ] var The quantity ˆ E the variance o μ var = is nown as the dispersion, or standard deviation o P598AEM Lecture Note 03

2 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede The true mean ˆ tells us where (in ) the distribution is important ie ˆ tells us where the random variable is most liely to be ound) The dispersion/standard deviation is a measure o the spread (or width) o the distribution over the space o small variance large variance The two distributions in the above igure have the same epectation value/true mean E [ ] = ˆ = μ, but obviously have very dierent widths and hence have dierent variances Eample o the Uniorm Distribution U(0,) in the Range = 0 to = : The Uniorm Probability Density Function (PDF) U ( 0,) is: ( ) i 0 < = 0 otherwise This is correctly normalized, ie (ie the area under the curve o d = d = d = The epectation value/true mean o U ( 0,) is: ˆ vs is = ) = d= d= The variance associated with U ( 0,) is: var = = ˆ = ( ) d d 0 0 We can certainly calculate the above variance or U(0,) directly, however, in general it is requently oten easier to calculate, i the variance is irst transormed in the ollowing way: var = = ( ˆ) d ( ˆ ˆ ) = + d ˆ ˆ ˆ ˆ = + d d d = + d d d [ ] ˆ [ ] ˆ [ ] ˆ = E E+ = E + or the U ( 0,) distribution: var = = E [ ] E [ ] = ˆ = E [ ] ˆ P598AEM Lecture Note 03

3 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede So or the U ( 0,) distribution: U(0,) var d = = = = 0 = ˆ = This means that i we perorm a measurement o a quantity that results in the nowledge that it can be anywhere (with equal lielihood/equal/lat probability) within the range (0,), our best estimate o its location is that is at the true mean, = ˆ = 05 with a standard deviation o = 09 More generally, or the lat/uniorm distribution U 0, L = L: L L mean: ˆ = variance: = standard deviation: = I the allowed range o is a b, it is also easy to show that U( a, b) ( b a) L =, and that: b+ a b a b a mean: ˆ = variance: = standard deviation: = Eample The HEP Hodoscope: In particle physics eperiments, a planar array o scintillation counters ( hodoscope ) is oten used to detect the passage o ionizing (charged) particles I a particular counter is hit (and that is all that on one nows), then this inormation can be considered a measurement o (say) the coordinate o the trajectory at the plane o the hodoscope The result o the measurement is that ˆ is the -coordinate o the center o the particular counter that was hit by the particle The standard deviation o the measurement is = L 09L, where L is the lateral width (in the -direction) o the counter, as shown in the igure below: L P598AEM Lecture Note 03 3

4 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede This eample is also relevant or determining the uncertainty in ADC count data in the regime o noise-ree data eg a -bit ADC measures quasi-dc voltages over a ±50 volt range bits = 4096 Note that: 0 Volts/4096 bits = 44 mv/adc count For noise-ree {or nearly noise-ree} ADC data, in the absence o using so-called ADC dithering techniques (adding and systematically {or randomly} varying a small voltage oset), then ADC V = 44mV = 070mV = ADC counts, corresponding to Eample The Cauchy Distribution: = π L + L = π L + L /πl 8L 0 +8L A careul chec shows that: d= + OK + L + ˆ = d= ln( + L ) Undeined!!! π but: Obviously, the epectation value o is/should be ˆ = 0 Hmmm There are mathematical complications with this PDF!!! Using ˆ = 0, we can calculate the variance o the Cauchy Distribution (using a table o integrals): var = = L d= π L ininite More mathematical problems! d L + inite Ininite!!! P598AEM Lecture Note 03 4

5 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede In order to avoid these diiculties, in practice a truncated Cauchy distribution is used: L c i < X = L + 0 otherwise X X d requires: c = The requirement that: = + L tan ( X / L) + X Now: d ( L ) (Note that or X, c Lπ as we epect) ˆ = = L + X ln 0 X π + = X and var = is inite as well More About the Moments o a Probability Distribution Function / PDF The st central moment (ie taen about the true mean ˆ μ ˆ ˆ ˆ ˆ E [ ] = E [ ] E [ ] = = 0 Higher moments o a probability distribution are sometimes useul = μ ) is not interesting, since: For eample the coeicients o sewness and urtosis, (Gr urtos = bulging/swelling ) respectively are the 3 rd and 4 th standardized central moments o a distribution (ie also taen about the true mean ˆ = μ ): Sewness: Ecess Kurtosis: γ μ E[( ) ] E[( ) ] = = = μ ˆ { E[( ) ]} = ˆ 4 4 μ4 E[( ˆ) ] E[( ˆ) ] γ = 3= 3= μ ˆ { E[( ) ]} = ˆ The 3 in the ecess urtosis deinition is added so that γ = 0 or a Gaussian (aa normal) 4 probability distribution Without the 3, regular/normal urtosis is deined as μ4 μ P598AEM Lecture Note 03 5

6 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede γ tells us whether the PDF Sewness γ < 0: sewed toward < ˆ γ = 0: symmetric about ˆ γ > 0: sewed toward > ˆ is: γ < 0 γ = 0 γ > 0 ˆ ˆ ˆ 3 Obviously, the long tail dominates in E[( ˆ) ] A probability distribution (eg the Gaussian/normal distribution see below ) that has γ = is called mesourtic, or mesourotic (Gr mesos = middle ) zero urtosis 0 Positive urtosis (γ > 0) indicates a peaed/slender/narrow probability distribution near the mean with abnormally long tails, and is called leptourtic, or leptourotic (Gr leptos = slender/thin ) Negative urtosis (γ < 0) indicates a lattened/wide/broad probability distribution near the mean with abnormally shortened tails, and is called platyurtic, or platyurotic (Gr platys = broad/lat ) Stoc maret investors are very interested in these particular higher moments (sewness & urtosis) o various probability distribution unctions Important Note: Each/every measurement o a random variable contains inormation about the PDF ( ) rom which it originates and its epectation value/true mean ˆ, variance var PDF s higher order moments =, and the In the limit o an ininite # o measurements N o the random variable, the PDF and all o its associated moments are precisely nown P598AEM Lecture Note 03 6

7 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede Any random variable can be normalized or standardized and can thus be reduced to a dimensionless quantity Suppose that the random variable has PDF ( ) and has a well-deined epectation value / true mean ˆ and variance Consider a new random variable deined as: u ( ˆ ) Aside: in general, i c is a constant, then: Ecg ceg nb dimensionless quantity [ ] = [ ] ˆ E[ u ] = u = u d= d= ( ) d= 0, ie u ˆ = 0 Thus: ˆ ˆ and: ( ˆ) var u = u u d= u d uˆ u d + uˆ = ( ˆ) = = d var = = u = d u d Thus, the random variable ( ˆ) u has: Epectation value/true mean Eu uˆ Variance [ ] = = 0 var u = u =, hence standard deviation = u P598AEM Lecture Note 03 7

8 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede The -D Gaussian (aa Normal) Distribution: One o the most common PDF s that is encountered in the everyday world o doing eperimental physics is the Gaussian (aa normal) probability distribution unction (PDF): u Gu = e with: = π G(u) G(0) = / π G(±) = 06G(0) 0 + u It is easily veriied that i u has the above PDF, then the epectation value/true mean o the Gaussian/normal distribution is E[u] = 0 (by symmetry) and its standard deviation, u = In terms o probability, the probability that u will be ound in an interval du is: du at u = 0 π P = e du at u =± π The ratio G(±)/G(0) is e = Later we shall show why the normal distribution is so universal in eperimental physics In many situations in eperimental physics, we need to describe a normally distributed random variable with epectation value / true mean ˆ and standard deviation We can also invert the transormation u = ˆ : d = G u du = e π The PDF o satisies: ( ˆ ) / d ( ˆ ) / = e π ie Shited Gaussian distribution, centered at = ˆ with standard deviation P598AEM Lecture Note 03 8

9 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede ( ˆ) = = π ( = ˆ ± ) ( ˆ ) = 06 = The N-D Probability Distributions Functions, N-D Cumulative Distribution Functions: In physics eperiments, we oten measure more than one property o a system (eg the three spatial coordinates o a particle s position, its 3-momentum (or velocity), the energy and/or lietime o an ecited atomic state, etc) An eperiment may then result in dierent random variables, which can be conveniently plotted on mutually orthogonal aes (ie a mathematical hyper-space consisting o orthogonal dimensions) and treated as i they were the components o a -dimensional vector First, let us consider only two such random variables and y The -D Cumulative Distribution Function: F ( XY, ) Prob ( < Xand y< Y) y The -D Probability Density Function: ( y, ) F( y, ) I the random variables and y are independent, then ( y, ) is separable in & y, ie ( y) = ( y) & y have no correlations (ie are uncorrelated), y Then: P ( a b b d, c y d ) d dy (, y ) + + < < = with the requirement: d dy ( y) a ˆ ˆ ˆ + c where the, y integrals run over the allowed values o and y: a b + and: c y d +, = P598AEM Lecture Note 03 9

10 Fall 03 Analysis o Eperimental Measurements B Eisenstein/rev S Errede In certain eperimental situations, we may not care (or even now) what y is, + hence we integrate y over its entire range and get: g = ( ydy, ) b In this situation: (, ) P a < b y< + = g d Thus we see that g( ) is also a PDF; g( ) is nown as the marginal distribution o Change o Random Variables: Suppose we have random variables (,,, ),,, a, with corresponding PDF We may wish (or need) to mae a change variables rom ( ) to where each o the y = y (,,, ) i i,,, y, y,, y, For the case o a single random variable, or a change o variables y = H, rom P598AEM Lecture Notes, p 8, the relation g ( y) dy = d leads to the relation (here): g y = where: H H = dy d = y-slope nb absolute value For random variables, this generalizes to: g y y y (,,, ) = J (,,, ) nb absolute value where J is the Jacobian: yy y J y y y y y y y y y nb The Jacobian J is the determinant o the matri o derivatives y i j ie compute the individual entries o the matri o partial derivatives y i j then compute the determinant o this matri, then tae the absolute value o the determinant, P598AEM Lecture Note 03 0

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information

MODULE 6 LECTURE NOTES 1 REVIEW OF PROBABILITY THEORY. Most water resources decision problems face the risk of uncertainty mainly because of the

MODULE 6 LECTURE NOTES 1 REVIEW OF PROBABILITY THEORY. Most water resources decision problems face the risk of uncertainty mainly because of the MODULE 6 LECTURE NOTES REVIEW OF PROBABILITY THEORY INTRODUCTION Most water resources decision problems ace the risk o uncertainty mainly because o the randomness o the variables that inluence the perormance

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the inormation contained in the joint p.d. o two r.vs.

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Department o Electrical Engineering University o Arkansas ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Two discrete random variables

More information

Mixed Signal IC Design Notes set 6: Mathematics of Electrical Noise

Mixed Signal IC Design Notes set 6: Mathematics of Electrical Noise ECE45C /8C notes, M. odwell, copyrighted 007 Mied Signal IC Design Notes set 6: Mathematics o Electrical Noise Mark odwell University o Caliornia, Santa Barbara rodwell@ece.ucsb.edu 805-893-344, 805-893-36

More information

Stochastic Processes. Review of Elementary Probability Lecture I. Hamid R. Rabiee Ali Jalali

Stochastic Processes. Review of Elementary Probability Lecture I. Hamid R. Rabiee Ali Jalali Stochastic Processes Review o Elementary Probability bili Lecture I Hamid R. Rabiee Ali Jalali Outline History/Philosophy Random Variables Density/Distribution Functions Joint/Conditional Distributions

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

Bayesian Technique for Reducing Uncertainty in Fatigue Failure Model

Bayesian Technique for Reducing Uncertainty in Fatigue Failure Model 9IDM- Bayesian Technique or Reducing Uncertainty in Fatigue Failure Model Sriram Pattabhiraman and Nam H. Kim University o Florida, Gainesville, FL, 36 Copyright 8 SAE International ABSTRACT In this paper,

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( )

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( ) SIO B, Rudnick! XVIII.Wavelets The goal o a wavelet transorm is a description o a time series that is both requency and time selective. The wavelet transorm can be contrasted with the well-known and very

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

Categories and Natural Transformations

Categories and Natural Transformations Categories and Natural Transormations Ethan Jerzak 17 August 2007 1 Introduction The motivation or studying Category Theory is to ormalise the underlying similarities between a broad range o mathematical

More information

Signals & Linear Systems Analysis Chapter 2&3, Part II

Signals & Linear Systems Analysis Chapter 2&3, Part II Signals & Linear Systems Analysis Chapter &3, Part II Dr. Yun Q. Shi Dept o Electrical & Computer Engr. New Jersey Institute o echnology Email: shi@njit.edu et used or the course:

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

Basic mathematics of economic models. 3. Maximization

Basic mathematics of economic models. 3. Maximization John Riley 1 January 16 Basic mathematics o economic models 3 Maimization 31 Single variable maimization 1 3 Multi variable maimization 6 33 Concave unctions 9 34 Maimization with non-negativity constraints

More information

Review of Elementary Probability Lecture I Hamid R. Rabiee

Review of Elementary Probability Lecture I Hamid R. Rabiee Stochastic Processes Review o Elementar Probabilit Lecture I Hamid R. Rabiee Outline Histor/Philosoph Random Variables Densit/Distribution Functions Joint/Conditional Distributions Correlation Important

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

In many diverse fields physical data is collected or analysed as Fourier components.

In many diverse fields physical data is collected or analysed as Fourier components. 1. Fourier Methods In many diverse ields physical data is collected or analysed as Fourier components. In this section we briely discuss the mathematics o Fourier series and Fourier transorms. 1. Fourier

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Joint ] X 5) P[ 6) P[ (, ) = y 2. x 1. , y. , ( x, y ) 2, (

Joint ] X 5) P[ 6) P[ (, ) = y 2. x 1. , y. , ( x, y ) 2, ( Two-dimensional Random Vectors Joint Cumulative Distrib bution Functio n F, (, ) P[ and ] Properties: ) F, (, ) = ) F, 3) F, F 4), (, ) = F 5) P[ < 6) P[ < (, ) is a non-decreasing unction (, ) = F ( ),,,

More information

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods Numerical Methods - Lecture 1 Numerical Methods Lecture. Analysis o errors in numerical methods Numerical Methods - Lecture Why represent numbers in loating point ormat? Eample 1. How a number 56.78 can

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

Two-dimensional Random Vectors

Two-dimensional Random Vectors 1 Two-dimensional Random Vectors Joint Cumulative Distribution Function (joint cd) [ ] F, ( x, ) P xand Properties: 1) F, (, ) = 1 ),, F (, ) = F ( x, ) = 0 3) F, ( x, ) is a non-decreasing unction 4)

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Analog Communication (10EC53)

Analog Communication (10EC53) UNIT-1: RANDOM PROCESS: Random variables: Several random variables. Statistical averages: Function o Random variables, moments, Mean, Correlation and Covariance unction: Principles o autocorrelation unction,

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

Analog Computing Technique

Analog Computing Technique Analog Computing Technique by obert Paz Chapter Programming Principles and Techniques. Analog Computers and Simulation An analog computer can be used to solve various types o problems. It solves them in

More information

Random variable X is a mapping that maps each outcome s in the sample space to a unique real number x, x. X s. Real Line

Random variable X is a mapping that maps each outcome s in the sample space to a unique real number x, x. X s. Real Line Random Variable Random variable is a mapping that maps each outcome s in the sample space to a unique real number,. s s : outcome Sample Space Real Line Eamples Toss a coin. Define the random variable

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does Geosciences 567: CHAPTER (RR/GZ) CHAPTER : INTRODUCTION Inverse Theory: What It Is and What It Does Inverse theory, at least as I choose to deine it, is the ine art o estimating model parameters rom data

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

Lecture : Feedback Linearization

Lecture : Feedback Linearization ecture : Feedbac inearization Niola Misovic, dipl ing and Pro Zoran Vuic June 29 Summary: This document ollows the lectures on eedbac linearization tought at the University o Zagreb, Faculty o Electrical

More information

The achievable limits of operational modal analysis. * Siu-Kui Au 1)

The achievable limits of operational modal analysis. * Siu-Kui Au 1) The achievable limits o operational modal analysis * Siu-Kui Au 1) 1) Center or Engineering Dynamics and Institute or Risk and Uncertainty, University o Liverpool, Liverpool L69 3GH, United Kingdom 1)

More information

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1.

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1. TLT-5/56 COMMUNICATION THEORY, Exercise 3, Fall Problem. The "random walk" was modelled as a random sequence [ n] where W[i] are binary i.i.d. random variables with P[W[i] = s] = p (orward step with probability

More information

Chapter 2. Basic concepts of probability. Summary. 2.1 Axiomatic foundation of probability theory

Chapter 2. Basic concepts of probability. Summary. 2.1 Axiomatic foundation of probability theory Chapter Basic concepts o probability Demetris Koutsoyiannis Department o Water Resources and Environmental Engineering aculty o Civil Engineering, National Technical University o Athens, Greece Summary

More information

Probability, Statistics, and Reliability for Engineers and Scientists MULTIPLE RANDOM VARIABLES

Probability, Statistics, and Reliability for Engineers and Scientists MULTIPLE RANDOM VARIABLES CHATER robability, Statistics, and Reliability or Engineers and Scientists MULTILE RANDOM VARIABLES Second Edition A. J. Clark School o Engineering Department o Civil and Environmental Engineering 6a robability

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

Additional exercises in Stationary Stochastic Processes

Additional exercises in Stationary Stochastic Processes Mathematical Statistics, Centre or Mathematical Sciences Lund University Additional exercises 8 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

More information

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Charles Boncelet Probabilit Statistics and Random Signals" Oord Uniersit Press 06. ISBN: 978-0-9-0005-0 Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Sections 8. Joint Densities and Distribution unctions

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Products and Convolutions of Gaussian Probability Density Functions

Products and Convolutions of Gaussian Probability Density Functions Tina Memo No. 003-003 Internal Report Products and Convolutions o Gaussian Probability Density Functions P.A. Bromiley Last updated / 9 / 03 Imaging Science and Biomedical Engineering Division, Medical

More information

MISS DISTANCE GENERALIZED VARIANCE NON-CENTRAL CHI DISTRIBUTION. Ken Chan ABSTRACT

MISS DISTANCE GENERALIZED VARIANCE NON-CENTRAL CHI DISTRIBUTION. Ken Chan   ABSTRACT MISS DISTANCE GENERALIZED VARIANCE NON-CENTRAL CI DISTRIBUTION en Chan E-Mail: ChanAerospace@verizon.net ABSTRACT In many current practical applications, the probability o collision is oten considered

More information

Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares

Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares Scattered Data Approximation o Noisy Data via Iterated Moving Least Squares Gregory E. Fasshauer and Jack G. Zhang Abstract. In this paper we ocus on two methods or multivariate approximation problems

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS Problem Set Problems on Unordered Summation Math 5323, Fall 2001 Februray 15, 2001 ANSWERS i 1 Unordered Sums o Real Terms In calculus and real analysis, one deines the convergence o an ininite series

More information

Quality control of risk measures: backtesting VAR models

Quality control of risk measures: backtesting VAR models De la Pena Q 9/2/06 :57 pm Page 39 Journal o Risk (39 54 Volume 9/Number 2, Winter 2006/07 Quality control o risk measures: backtesting VAR models Victor H. de la Pena* Department o Statistics, Columbia

More information

Basic properties of limits

Basic properties of limits Roberto s Notes on Dierential Calculus Chapter : Limits and continuity Section Basic properties o its What you need to know already: The basic concepts, notation and terminology related to its. What you

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis 2 requency-domain Analysis Electrical engineers live in the two worlds, so to speak, o time and requency. requency-domain analysis is an extremely valuable tool to the communications engineer, more so

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Chapter 5,6 Multiple RandomVariables

Chapter 5,6 Multiple RandomVariables Chapter 5,6 Multiple RandomVariables ENCS66 - Probabilityand Stochastic Processes Concordia University Vector RandomVariables A vector r.v. is a function where is the sample space of a random experiment.

More information

2 Statistical Estimation: Basic Concepts

2 Statistical Estimation: Basic Concepts Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 2 Statistical Estimation:

More information

On a Closed Formula for the Derivatives of e f(x) and Related Financial Applications

On a Closed Formula for the Derivatives of e f(x) and Related Financial Applications International Mathematical Forum, 4, 9, no. 9, 41-47 On a Closed Formula or the Derivatives o e x) and Related Financial Applications Konstantinos Draais 1 UCD CASL, University College Dublin, Ireland

More information

Least-Squares Spectral Analysis Theory Summary

Least-Squares Spectral Analysis Theory Summary Least-Squares Spectral Analysis Theory Summary Reerence: Mtamakaya, J. D. (2012). Assessment o Atmospheric Pressure Loading on the International GNSS REPRO1 Solutions Periodic Signatures. Ph.D. dissertation,

More information

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

Lecture 13: Applications of Fourier transforms (Recipes, Chapter 13)

Lecture 13: Applications of Fourier transforms (Recipes, Chapter 13) Lecture 13: Applications o Fourier transorms (Recipes, Chapter 13 There are many applications o FT, some o which involve the convolution theorem (Recipes 13.1: The convolution o h(t and r(t is deined by

More information

OPTIMAL PLACEMENT AND UTILIZATION OF PHASOR MEASUREMENTS FOR STATE ESTIMATION

OPTIMAL PLACEMENT AND UTILIZATION OF PHASOR MEASUREMENTS FOR STATE ESTIMATION OPTIMAL PLACEMENT AND UTILIZATION OF PHASOR MEASUREMENTS FOR STATE ESTIMATION Xu Bei, Yeo Jun Yoon and Ali Abur Teas A&M University College Station, Teas, U.S.A. abur@ee.tamu.edu Abstract This paper presents

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

TFY4102 Exam Fall 2015

TFY4102 Exam Fall 2015 FY40 Eam Fall 05 Short answer (4 points each) ) Bernoulli's equation relating luid low and pressure is based on a) conservation o momentum b) conservation o energy c) conservation o mass along the low

More information

APPENDIX 1 ERROR ESTIMATION

APPENDIX 1 ERROR ESTIMATION 1 APPENDIX 1 ERROR ESTIMATION Measurements are always subject to some uncertainties no matter how modern and expensive equipment is used or how careully the measurements are perormed These uncertainties

More information

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems.

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems. Syllabus Objective:. The student will calculate its using the basic it theorems. LIMITS how the outputs o a unction behave as the inputs approach some value Finding a Limit Notation: The it as approaches

More information

R Based Probability Distributions

R Based Probability Distributions General Comments R Based Probability Distributions When a parameter name is ollowed by an equal sign, the value given is the deault. Consider a random variable that has the range, a x b. The parameter,

More information

Chapter 6 Reliability-based design and code developments

Chapter 6 Reliability-based design and code developments Chapter 6 Reliability-based design and code developments 6. General Reliability technology has become a powerul tool or the design engineer and is widely employed in practice. Structural reliability analysis

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

1. Definition: Order Statistics of a sample.

1. Definition: Order Statistics of a sample. AMS570 Order Statistics 1. Deinition: Order Statistics o a sample. Let X1, X2,, be a random sample rom a population with p.d.. (x). Then, 2. p.d.. s or W.L.O.G.(W thout Loss o Ge er l ty), let s ssu e

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Part I: Thin Converging Lens

Part I: Thin Converging Lens Laboratory 1 PHY431 Fall 011 Part I: Thin Converging Lens This eperiment is a classic eercise in geometric optics. The goal is to measure the radius o curvature and ocal length o a single converging lens

More information

RELIABILITY OF BURIED PIPELINES WITH CORROSION DEFECTS UNDER VARYING BOUNDARY CONDITIONS

RELIABILITY OF BURIED PIPELINES WITH CORROSION DEFECTS UNDER VARYING BOUNDARY CONDITIONS REIABIITY OF BURIE PIPEIES WITH CORROSIO EFECTS UER VARYIG BOUARY COITIOS Ouk-Sub ee 1 and ong-hyeok Kim 1. School o Mechanical Engineering, InHa University #53, Yonghyun-ong, am-ku, Incheon, 40-751, Korea

More information

Gap Excitations and Series Loads in Microstrip Lines: Equivalent Network Characterization with Application to THz Circuits

Gap Excitations and Series Loads in Microstrip Lines: Equivalent Network Characterization with Application to THz Circuits Gap Ecitations and Series Loads in Microstrip Lines: Equivalent Network Characterization with Application to THz Circuits Andrea Neto and Peter H. Siegel Jet Propulsion Laboratory, Caliornia Institute

More information

Circuit Complexity / Counting Problems

Circuit Complexity / Counting Problems Lecture 5 Circuit Complexity / Counting Problems April 2, 24 Lecturer: Paul eame Notes: William Pentney 5. Circuit Complexity and Uniorm Complexity We will conclude our look at the basic relationship between

More information

Reliability Assessment with Correlated Variables using Support Vector Machines

Reliability Assessment with Correlated Variables using Support Vector Machines Reliability Assessment with Correlated Variables using Support Vector Machines Peng Jiang, Anirban Basudhar, and Samy Missoum Aerospace and Mechanical Engineering Department, University o Arizona, Tucson,

More information

y,z the subscript y, z indicating that the variables y and z are kept constant. The second partial differential with respect to x is written x 2 y,z

y,z the subscript y, z indicating that the variables y and z are kept constant. The second partial differential with respect to x is written x 2 y,z 8 Partial dierentials I a unction depends on more than one variable, its rate o change with respect to one o the variables can be determined keeping the others ied The dierential is then a partial dierential

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numerical Methods or Engineering Design and Optimization Xin Li Department o ECE Carnegie Mellon University Pittsburgh, PA 53 Slide Overview Linear Regression Ordinary least-squares regression Minima

More information

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS n * D n d Fluid z z z FIGURE 8-1. A SYSTEM IS IN EQUILIBRIUM EVEN IF THERE ARE VARIATIONS IN THE NUMBER OF MOLECULES IN A SMALL VOLUME, SO LONG AS THE PROPERTIES ARE UNIFORM ON A MACROSCOPIC SCALE 8. INTRODUCTION

More information

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis Lecture Recalls of probability theory Massimo Piccardi University of Technology, Sydney,

More information

1036: Probability & Statistics

1036: Probability & Statistics 1036: Probabilit & Statistics Lecture 4 Mathematical pectation Prob. & Stat. Lecture04 - mathematical epectation cwliu@twins.ee.nctu.edu.tw 4-1 Mean o a Random Variable Let be a random variable with probabilit

More information

Midterm Summary Fall 08. Yao Wang Polytechnic University, Brooklyn, NY 11201

Midterm Summary Fall 08. Yao Wang Polytechnic University, Brooklyn, NY 11201 Midterm Summary Fall 8 Yao Wang Polytechnic University, Brooklyn, NY 2 Components in Digital Image Processing Output are images Input Image Color Color image image processing Image Image restoration Image

More information

On High-Rate Cryptographic Compression Functions

On High-Rate Cryptographic Compression Functions On High-Rate Cryptographic Compression Functions Richard Ostertág and Martin Stanek Department o Computer Science Faculty o Mathematics, Physics and Inormatics Comenius University Mlynská dolina, 842 48

More information

Probabilistic Model of Error in Fixed-Point Arithmetic Gaussian Pyramid

Probabilistic Model of Error in Fixed-Point Arithmetic Gaussian Pyramid Probabilistic Model o Error in Fixed-Point Arithmetic Gaussian Pyramid Antoine Méler John A. Ruiz-Hernandez James L. Crowley INRIA Grenoble - Rhône-Alpes 655 avenue de l Europe 38 334 Saint Ismier Cedex

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

Special types of Riemann sums

Special types of Riemann sums Roberto s Notes on Subject Chapter 4: Deinite integrals and the FTC Section 3 Special types o Riemann sums What you need to know already: What a Riemann sum is. What you can learn here: The key types o

More information

Statistical Mechanics and Combinatorics : Lecture II

Statistical Mechanics and Combinatorics : Lecture II Statistical Mechanics and Combinatorics : Lecture II Kircho s matrix-tree theorem Deinition (Spanning tree) A subgraph T o a graph G(V, E) is a spanning tree i it is a tree that contains every vertex in

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd.

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd. .6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics Spline interpolation was originally developed or image processing. In GIS, it is mainly used in visualization o spatial

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 2 2 MACHINE LEARNING Overview Definition pdf Definition joint, condition, marginal,

More information

ECE 546 Lecture 03 Waveguides

ECE 546 Lecture 03 Waveguides ECE 546 Lecture 03 Waveguides Spring 018 Jose E. Schutt-Aine Electrical & Computer Engineering Universit o Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Parallel-Plate Waveguide Maxwell s Equations

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

CAP 5415 Computer Vision Fall 2011

CAP 5415 Computer Vision Fall 2011 CAP 545 Computer Vision Fall 2 Dr. Mubarak Sa Univ. o Central Florida www.cs.uc.edu/~vision/courses/cap545/all22 Oice 247-F HEC Filtering Lecture-2 General Binary Gray Scale Color Binary Images Y Row X

More information

Expression arrays, normalization, and error models

Expression arrays, normalization, and error models 1 Epression arrays, normalization, and error models There are a number of different array technologies available for measuring mrna transcript levels in cell populations, from spotted cdna arrays to in

More information

Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract)

Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) Electronic Notes in Theoretical Computer Science 270 (1) (2011) 113 119 www.elsevier.com/locate/entcs Finite Dimensional Hilbert Spaces are Complete or Dagger Compact Closed Categories (Extended bstract)

More information

Lecture 14. Joint Probability Distribution. Joint Probability Distribution. Generally we must deal with two or more random variable simulatneously.

Lecture 14. Joint Probability Distribution. Joint Probability Distribution. Generally we must deal with two or more random variable simulatneously. ENM 07 Lecture 4 Joint Probability Distribution Joint Probability Distribution Generally we must deal with two or more random variable simulatneously. For example, we might select abricated vidget and

More information

CISE-301: Numerical Methods Topic 1:

CISE-301: Numerical Methods Topic 1: CISE-3: Numerical Methods Topic : Introduction to Numerical Methods and Taylor Series Lectures -4: KFUPM Term 9 Section 8 CISE3_Topic KFUPM - T9 - Section 8 Lecture Introduction to Numerical Methods What

More information

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is Math 416 Lecture 3 Expected values The average or mean or expected value of x 1, x 2, x 3,..., x n is x 1 x 2... x n n x 1 1 n x 2 1 n... x n 1 n 1 n x i p x i where p x i 1 n is the probability of x i

More information